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Abstract— Wrinkling (buckling) during a sheet forming process is a major consideration when
designing part shape. die geometry and processing parameters. In most instances. the sheet metal is
constrained to some extent between binders and/or matching dies at some stage during processing.
In this paper, we will examine the wrinkling behavior of both elastic and elastic-plastic sheet
subjected to edge compression and lateral constraint. A criterion for wrinkling under such constraint
is established using a combination of finite element analysis and energy conservation. Various
methods of incorporating imperfections into a finite clement model in order to capture buckling
and post-buckling behavior are discussed. A simple and practical form of imperfection for predictive
modeling of buckling is given along with a discussion of the sensitivity of the solution to the
magnitude and distribution of imperfections. Using the proposed form of imperfection. we are able
to accurately simulate the wrinkling behavior under complicated boundary conditions in a predictive
manner. Copyright . 1996 Elsevier Science Ltd.

I. INTRODUCTION

Material and structural instability phenomena such as localization and buckling are major
issues to be addressed in designing part shape, die geometry and forming parameters of
sheet metal forming, where localization leads to tearing failure of the part during processing
and buckling alters the ability to impose stretching during processing and also adversely
affects final part appearance, assembling and function. Computational prediction of the
onset and growth of these instabilities has significant ramifications for optimizing the design
of parts. selecting materials and improving part formability. In this paper, we will focus on
the buckling instability of sheet under laterally constrained conditions which are typically
encountered during forming (Fig. 1).

Hill’s general theory of bifurcation and uniqueness (Hill, 1958) built a foundation for
much of the research on buckling since that time. Hutchinson (1974) detailed the bifurcation
theory for structures where the material is in the plastic range. An application of the theory
to the case of forming under constrained conditions, where lateral constraints (constraint
normal to the plane of the sheet) are present in the form of binder/sheet/die or die/sheet/die
interactions, was given by Triantafyllidis and Needleman (1980). They applied the bifur-
cation theory to an annular plate subjected to axisymmetric radial tension along its inner
edge. By resting the annular plate on a continuous linear elastic foundation, that 1s,
p = —ku.(r,0), where the spring constant & is related to the binder stiffness K, they treated
the binder as a deformable binder and obtained the effect of binder stiffness on the critical
buckling stress and the wave number. Their results were found to compare favorably with
the simple beam model of Senior (1956) for the cases where K = 0. Also, small strain
deformation was assumed. A similar eigenvalue approach for elastic rectangular plates on
a non-linear unilateral elastic foundation can be found in recent literature such as Elisakoft
et al. (1994) and Shahwan et a/. (1994) whose work was directed towards understanding
the buckling of films bonded to a substrate.

For compilicated geometry and boundary conditions, numerical solutions using the
Finite Element Method have become a prime tool to predict buckling behavior. Although
the onset of buckling can be predicted by performing eigenvalue analysis, the highly
nonlinear naturc of the post-bifurcation behavior makes an analytical solution nearly
impossible to obtain (Tomita, 1994). In fact, the post-buckling behavior must be traced by
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Fig. 1. Schematic of an axisymmetric sheet metal forming process. Here, radial draw-in produces a
compressive hoop stress state in the flange section of the sheet which is subjected to the lateral
constraint of the binder and the die.

a model with initial imperfection. Most analytical and numerical models implement a
specific modal shape or Fourier series in order to capture post-buckling behavior (Tri-
antafyllidis er al., 1980, Fatnassi ef al., 1985 and recent proceedings of NumiForm 1992
and Numisheet 1993). For an accurate solution, the correct mode shapes must be known a
priori. Therefore, obtaining the correct post-buckling mode usually requires several attempts
where various frequencies are tried. For a complicated sheet metal forming process, it is
not desirable to utilize such a technique due to the relatively long CPU time for each
simulation where it would also necessitate an eigenvalue analysis at each increment to
determine buckling initiation.

In this paper, we first present our approach in Section 2 for determining the conditions
required for a plate to wrinklet under lateral constraint where the binder and the die are
treated as rigid surfaces, which is often the case in practical situations. The criterion specifies
the combination of in-plane compressive stress and binder pressure (normal to the plane
of the sheet) constraint needed to initiate the wrinkling as well as the mode/wavelength of
wrinkling produced and can be easily used with large deformation theory, any constitutive
law and hardening law, etc. Numerical verification of modal buckling under lateral con-
straint is given in Section 3 where imperfections in sinusoidal modal shapes are used in the
finite element models. A sensitivity study of the imperfection is presented as well. In order
to overcome the shortcoming of using a pre-defined modal imperfection, a simplified
imperfection form is presented in Section 4 and compared to our buckling criterion. In
Section 3, a robust and simple format for implementation of imperfections into a finite
element model is presented which can capture initiation and post-buckling behavior in a
predictive manner. Finally, in Section 6, simulations of longer plates under lateral constraint
are conducted to study the effect of boundary conditions on the initial buckling stress.

t Sheet buckling in sheet metal forming is generally referred to as wrinkling.
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Fig. 2. Schematic of a plate under edge compression and lateral constraint.

2. BUCKLING CRITERION FOR BUCKLING UNDER LATERAL CONSTRAINT

As a basic element in sheet metal forming processes, a portion of the blank is con-
strained by a die and a binder ; then, together witl: friction, the binder constraint determines
the material flow into the deformation zone, the so-called die cavity (Fig. 1). As the punch
advances and deforms the sheet, material is drawn into the forming cavity and a compressive
stress develops in the plane of the sheet. This compressive stress will result in wrinkling if
the binder force is not sufficient to suppress the out-of-plane displacements. This common
phenomenon can be simplified to the problem of a rectangular plate subjected to in-plane
compression under lateral constraint shown in Fig. 2. The plate is simply supported along
the edges at x = 0 and x = L. If the binder force is zero, the critical stress needed to initiate
buckling in the elastic plate is given by [e.g., Timoshenko (1961)]:

2E I3 2
a. e L =n*c, n=12... (1
" 12(1 —vH\L

where FE is the elastic tensile modulus, v is Poisson’s ratio, and » corresponds to the mode
of buckling. The buckling stress o, is smallest when n =1 (one-half sine wave) and,
therefore, mode 1 is the favored mode of buckling. However, if mode | is somehow
suppressed due to a constraint, then mode 2 wil be favored and so on. Numerous cases of
buckling under constraint have been examined, perhaps one of the earliest is a bar on an
elastic foundation (e.g., Hartog, 1952, Timoshenko, 1961). These studies show that the
critical stress and mode of buckling depend on the level of constraint imposed by the
elasticity of the foundation. A more contemporary example is the buckling activated
delamination of a thin coating from a substrate (Argon et al., 1989) where the debond
energy is computed based on knowledge of the in-plane stress and buckling wavelength.
Below, a criterion for the initiation and mode of buckling for a plate sandwiched between
a rigid die and a rigid binder is developed in terms of the in-plane compressive stress and
the binder pressure normal to the plane of the plate. A combination of finite element
analysis and energy conservation is used to construct this criterion.

Finite element model

The plate 1s modeled with finite strain 4-node reduced integration shell elementsf
(ABAQUS type S4RF) using a commercial finite element code ABAQUS. This shell element
provides a linear interpolation of both displacement and rotation over the element. The
reduced integration element has five integration points through the thickness, all located at
the center of the element; hourglass controls on displacement and rotation are achieved
through modeling an artificial stiffness associated with the zero-energy deformation modes
(hourglass modes) which become possible due to the effect of reduced integration on the
transverse shear behavior. The finite element code uses an implicit solver where equilibrium
is converged upon in each increment using a Newton-Raphson method. As is known,
buckling initiates from some form of imperfection in the structure which can be a geometric
imperfection (such as lack of flatness), a material imperfection (e.g., non-uniform thickness,

+Shell elements are chosen due to their efficiency in capturing bending and stretching ; shell elements are
also very effective in modeling sheet metal forming.
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weak spots), or loading imperfection (e.g., off-center loading). The geometric imperfection
has been commonly modeled by a Fourier series expansion of initial deflection (Timo-
shenko, 1961, Tennyson, 1970), and a material imperfection modeled by weak elements
having either thinner thickness and/or lower yield stress. In the simulations of this section,
the form of imperfection is chosen to be a geometric imperfection which positions the mid-
surface of the plate to a sinusoidal mode shape (z, = At,sin nnx/L) of a very small maximum
amplitude 4 = 0.001, where » is the buckling mode, 7, is the plate thickness and L is the
plate length. Incorporation of the imperfection in this manner acts to predefine the mode
obtained ; a new method is given later which acts to define the mode in a predictive way.

We begin with an elastic plate of length L, arbitrary width w, thickness 7,. elastic tensile
modulus £, and Poisson’s ratio v to illustrate our approach. The plate is modeled with 48
elements along the length (x direction) and one element along the width (y direction) (see
Fig. 4). The solution is later generalized to plates of arbitrary length. All rotations of nodes
at vy = w are set to be identical to those of their counterparts at y = 0. Several cases will be
examined : a perfect plate (no imperfections), and four plates containing imperfections with
the mid-surfaces predisposed to modes 1, 2, 3, and 4, respectively. In all cases, the loading
condition consists of a monotonically increasing compressive displacement u, of edges at
x =0 and x = L. The stress states of the elements and the total strain energy of the sheet
are then recorded as functions of edge displacement u,.

Criterion

In the case of the perfect elastic plate, buckling does not occur and the plate is therefore
under a state of uniform compression. The total strain of this plate. &, is simply the elastic
strain energy due to uniform uniaxial compression and is normalized by Young’s modulus
E « Volume and shown as a function of normalized displacement (u./L) in Fig. 3 (solid
curve). The plate pre-positioned to mode 1 is found to undergo mode 1 buckling as expected.
The numerically predicted initial buckling stress is nearly identical to the analytical solution
a.,,. The normalized total strain energy density for the mode 1 buckled plate. &, /EV. as a
function of edge displacement u./L is cross-plotted with that of the perfect plate in Fig. 3
as the dashed line. Similarly, plates buckling in higher modes » were simulated using models
with the corresponding sinusoidal imperfection modes # and the total strain energies &,
are recorded (Fig. 3).

40 - Perfect Flat Plate &, R

Strain Energy Density/Young's Modulus E (107%)

Normalized Edge Displacement u,/L

Fig. 3. Total strain cnergy densities stored in the flat plate and the plates buckling in mode 1. 2 or 3.
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Fig. 4. Schematics of a mode 2 buckled plate being suppressed by the binder.

As shown in Fig. 3, the strain energy of a buckled plate is consistently lower than that
of the perfect plate at a certain edge displacement. Note that in the case of coating
delamination, this energy difference is taken to be the debonding energy (e.g.. Argon er al.,
1989). In the case of sheet forming, the difference between the two energies at any given
displacement u, is the external work required to suppress buckling imposed by the binder :

# .u = é()n - é0v|‘,, = ./I‘v(ll.\') (2)

where n denotes the buckling mode. Figure 4 shows a plate which was prebuckled in mode
2 due to a compressive displacement 2u, and no lateral constraint which produced a
maximum center deflection 26,,,,. The plate is now placed between two rigid binders and
the boundary conditions are set such that the edge displacements of the sheet are fixed in
the x direction (du, = 0, at x =0, L). Binder 1 is fully constrained while Binder 2 is
monotonically displaced 24,,,. in the negative z direction.

The total work # contributed by Fis

2‘)1)!“\
W= [ wFdu. 3)
(

0

where w is the plate width. An example of the binder reaction force-displacement trajectory
is shown in Fig. 5 for the case of a plate prebuckled in mode 2 by an edge compression of
u/L = 1/60. Furthermore, assuming that the relationship between the binder reaction force
F and the binder displacement u,. is a second-order polynomial function, that is,

F: a(uh:‘b‘muv)z +b (4)
and denoting F,,,, as the maximum force, we obtain

F

max

)

LITTAN

b = Enu X

a =

As shown in Fig. 5, eqn (4) fits the behavior extremely well. This agreement is found to
hold for higher order modes as well by sampling the press down process at various end
displacements and buckling modes. The work #" can then be written as
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Fig. 5. The trajectories of the binder force per unit width which acts to suppress the mode 1 wrinkling
vs the normalized binder displacement for the case of u,/L = 1/60.

4/1/ ) = %FIU(I\ 5}71(1 X ‘4‘ (5)

Combining eqn (5) and egn (2), we can obtain the maximum force per unit width £, as

36,-6.,
F’IHJ\‘ = N ‘ 46
o 4 onm,\,, W ( )
or
3 é(;“ - éf‘n,‘
i, T 4§ : 7
pl"(. " 4 ()nlu\”Ll1' ( )

where p is the effective binder pressure and p,,,, is interpreted as the binder pressure needed
to suppress buckling of the nth mode at a given u /L.

In summary, the binder pressure p,,, needed to suppress mode n wrinkling as a
function of edge displacement /L can be calculated by buckling plates and recording the
corresponding d,,,(u,) and &, (x,) ; then eqn (7) is used together with the energy differences
from Fig. 3 to compute p,,,, .

Figure 6 shows the calculated p,,,., and p,,,., as a function of «,/L. The two curves are
found to cross over each other at a specific point, the transition pressure p,,, which is the
binder pressure where the favored mode of buckling transits from mode 1 to mode 2. For
example, consider the case of a binder pressure p* applied on the plate, the plate would
buckle in mode 1 and mode 2 at displacements of u¥ and u¥, respectively. For the case
where p* < p,,, we have ut < u¥ (Fig. 6), i.e., the critical buckling stress for mode | is lower
than that for mode 2, and therefore, the plate would favor mode 1. On the other hand, for
the case p** > p,,, we have u¥* < uf*, and therefore, the plate would buckle in mode 2.

This criterion thus quantitatively defines the critical buckling stress and, also, the mode
of buckling which will occur in the presence of a given binder pressure. For a limited plate
length L. mode n buckling corresponds to a wavelength of L/n. Therefore, a relationship
between the normalized wavelength (2/f) and the pressure (p/F) for a plate of length L can
be defined as the dash-dotted line in Fig. 7. Now, considering an infinite plate which can
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where Eis Young's modulus, , is the edge displacement of mode » at a binder pressure of p.
The dash-dotted line in Fig. 8 shows the calculated critical buckling stress vs the normalized
applied pressure obtained from the analysis of both the finite plate (which has limited mode
shapes, but whose buckling stress will differ with pressure) and the infinite plate. Earlier,
Cao and Boyce provided a similar relationship (buckling stress vs binder pressure) based
on a combination of their numerical simulations and experiments of aluminum cup forming
under various constant binder force conditions (see Jalkh ez al., 1993). They utilized the
relationship to optimize the forming process by increasing the binder force during the
process only when it was needed to suppress wrinkling. Figure 8 demonstrates the ability
to analytically obtain such curves for use in designing forming process parameters without
need for experimental data.

Note that the mode and critical stress criteria shown as the dash-dotted curves in Figs
7 and 8 were obtained with 2 maximum offset amount A4 set at 0.001. However, the buckling
stress level is sensitive to the level of imperfection. For example, for a plate whose mid-
surface is pre-positioned to mode 2 via z, = At,sin (2zx/L), subjected to edge compression
only, 4 =0.001 predicts the buckling stress to be 40, (excellent agreement with the
analytical solution), while 4 = 0.03 predicts 3.88¢,, . The simulated buckling stress
decreases as the magnitude of the imperfection increases. However, we note that imper-
fections of 4 > 0.03 are not physically realistic. As a resuit of the imperfection sensitivity,
the force required to suppress the buckling will also vary with the level of imperfection.
Figure 9 shows the correlation of the normalized maximum offset 4 and the transition
pressure p»; between modes 2 and 3 normalized to maximum p,, obtained. For the elastic
material, we notice that this relationship is almost linear. To illustrate the imperfection
sensitivity in the other modes, the dash-dotted curves in Figs 7 and 8 which defined the
buckling wavelength and the buckling stress as a function of p, respectively, are calculated
when A is 0.001, while the dashed curves define the relationship when A4 is 0.03. The offset
is found to affect the transition pressure between modes (Fig. 7), but does not strongly
influence the overall length of the critical buckling stress (Fig. 8).
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buckle into any wavelength. a continuous relationship between wavelength and binder
pressure is expected to characterize the buckling behavior of a plate under constraint. This
can be obtained numerically by continuously performing the above analysis for plates of

length L), L,, -~

,L,.where L, < L, < --- < L,. The result of the normalized wavelength

(7/t) as a function of lateral pressure (p/E) for the case of an elastic material is shown in
Fig. 7 where we observe a decrease in wavelength with increasing binder pressure. The
curve shows an extremely nonlinear behavior even for the elastic material.

The critical buckling stress as a function of applied pressure can be calculated as
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Fig. 9. Normalized transition pressures p as a function of the offset factor 4 in FEM model
(z, = At,sin(nnx/L)).

Behavior of elastic-plastic plate

In practice, wrinkling failure during forming more typically occurs when the sheet is
in the range of plastic deformation. The basic idea of energy conservation presented above
for the elastic plate still applies, although the press-down procedure must be interpreted as
a virtual process in the case of the elastic-plastic sheet. Here, the calculated wrinkling
wavelength and stress as a function of applied pressure and the sensitivity of the solutions
to the magnitude of the imperfections implemented into the finite element model will be
compared to those obtained for the elastic plate.

The material in our simulations is aluminum AI2008-T4 which exhibits an elastic-
plastic stress-strain behavior with plastic behavior characterized by ¢ = K¢", where the
material strength coefficient is K = 528 MPa and the strain hardening exponentis# = 0.265;
the elastic modulus is E = 70 GPa. The plastic behavior of the material is modeled using
the isotropic Mises yield criterion with an initial yield stress ¢, of 120 MPa and also
assuming isotropic strain hardening following the given power ldW hardening.

A complete curve defining the correlation between the applied lateral constraint pj,z.,
(now normalized to the initial yield stress o, ) and the resulting buckling wavelength 1
(normalized to the plate thickness ¢,) fora finite plate and an infinite plate can be calculated
and is shown in Fig. 10. The results are similar to the elastic case (Fig. 7), however, the
mode shape transition pressures are at much lower values. Figure 11 shows the calculated
critical buckling stress o/,, vs the binder pressure p,,,..,/0, . Notice that the curve is much
flatter compared to that of the elastic material (Fig. 8) because of the yielding of the elastic-
plastic plate, where the initial yield stress ¢, = 4.356,,,. Additionally, recent experiments
and simulations of conical cup forming of this same material found the cups to wrinkle
under the binder in a manner dependent on the binder pressure. The buckling wavelengths
and critical stresses obtained in the cup forming experiments are shown in Figs 10 and 11,
respectively, showing excellent agreement with the results predicted by the criterion. More
details about the cup forming results and the potential applications of our criterion are
available in Cao (1995) and Cao and Boyce (1994 and 1996).

As in the case of the elastic material, the results shown in Figs 10 and 11 vary somewhat
depending on the amount of the initial geometric imperfection offset 4 used in the finite
element model. The solid and dashed lines in Fig. 9 show the effect of the offset 4 on py,
(the transition pressure between mode 3 and mode 4 for a finite plate having L/t = 48) and



162 J. Cao and M. C. Boyce

T —T T T T T T T T

[¢] Circular cup forming

Infinite Plate A=0.01 -

40—1:

—:| —_— Finite Plate (L/t=48) A=0.001
AU Finite Plate (L/t=48) A=0.03

Normalized Buckling Wavelength A/t

0 100 200

Normalized Binder Pressure p/o,, (107

Fig. 10. Calculated buckling wavelength as a function of applied normal pressure for an elastic-
plastic material compared with the simulation results of a circular cup forming process.

8 T T lf] T T T T l T T T T I T T T T | T T T
A N
N
R
b -

n
3 6
=
e L
)
o L
>
2oL
“n
[ L
a

4 —

g _j 4 Circular cup forming |

— / o Mode 4

© f ]

:1_% F N Mode 3 4

S 3 ° Mode 2 B

T Rr + Mode 1 7

N -

5 .. Finite (L/t=48) A=0.001

g | . Finite (L/t=48) A=0.03

= | Infinite Plate A=0.01 ]
0 PSSO R R SRR SO T ST S S S

o} 20 40 60 80

Normalized Binder Pressure p/o,, (107"
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that obtained from three-dimensional simulations of circular cup forming. Note that the yield stress
0,0=>5440,,,.

P> (the transition pressure between mode 1 and mode 2) normalized to the highest value
in their corresponding group, respectively. Notice that plastic deformation prior to buckling
happens in modes higher than mode 3 and a very different sensitivity phenomenon from
the elastic material is found ; that is, the solution has a reasonable estimate when 4 < 0.03
and varies significantly when 4 > 0.03. A typical thickness variation in a blank of sheet is
approximately 1%¢, and we note that the solution is not that sensitive when realistic values
for the imperfection are used. Overall, the solution of the critical buckling stress is more
sensitive to the initial imperfection in the plastic range than that in the elastic range. A
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Fig. 12. Effect of the transverse anisotropy ratio R on the wrinkling.

similar result was obtained by Needleman (1975) for the case of buckling of a circular plate
subjected to in-plane compression only. In the remainder of this paper, we will choose
A = 0.01 as our reference except when specified otherwise.

The plasticity of aluminum sheet is generally anisotropic and often characterized by
the R ratio, the ratio of the width to thickness strain in a uniaxial tension test. Figure 12
illustrates the effect of the normal anisotropy parameter, R, on wrinkling by plotting the
buckling wavelength and initial buckling stress as a function of applied binder pressure.
The yield criterion used is the 1948 Hill anisotropic yield surface. It can be seen that at a
certain pressure, the initial buckling stress increases with the increasing R ratio. This
result is consistent with the observation of Triantafyllidis and Needleman (1980) and the
dependency is rather small (about 5% for the worst case).

3. SIMULATION OF MODAL BUCKLING UNDER CONSTRAINT

Above, a criterion for determining the relationship between lateral constraint and the
buckling mode/wavelength/stress for a rectangular plate using finite element analysis and
considerations of energy conservation was given. In this section, a finite element model
with a lateral constraint imposed by a binder is constructed to study the accuracy of the
buckling initiation and mode predicted by the criterion. Modal buckling of the elastic plate
is demonstrated here.

Finite element model

A rectangular plate having L/r = 48 is placed between two rigid plates where a normal
compressive force is then applied and designated as F,,,, (Fig. 2). The force provides an
initial pressure p,;.., normal to the plate. The elastic plate is modeled with 48 four-node
finite strain reduced integration elements (ABAQUS type S4RF) in the elongation direction.
The bottom rigid plate is referred to as the die and the upper plate is the binder. The
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interfaces between the two rigid plates and the elastic plate are taken to be frictionless and
modeled by a three-dimensional interface element (ABAQUS type IRS4). The two rigid
surfaces are originally placed one-half of the sheet thickness apart from the centerline of
the plate. An exponential relationship between the contact pressure p and clearance ¢
between the rigid surface and the plate i1s used to artificially simulate a build-up to material
resistance in the z direction.

I L
/7 - ]7«) ln(] _('”) ¢ Cy
p=0 c>c, (8)

where ¢, is set to be one-half of the thickness and p, is set to be on the order of 10 MPa
(p/E = 1.4E-4) which is a typical contact pressure. The contact pressure-clearance relation
provides negligible penetration in most instances and eases convergence of the contact
solution. The selection of contact pressure will only affect the rate of convergence, but not
the final solution as long as negligible penetration is enforced. Note that the through-
thickness stress is of no practical concern as it is negligible compared to in-plane stress
levels.

The form of imperfection is still taken to be a pre-disposed mid-surface as a sine wave
z, = At,sin(nnx/L), where 4 is 0.01. In order to simulate precise first, second and fourth
mode buckling, the boundary condition of the sheet is set as w.|,_, = u.|,_,, and for the
third mode, it is further restricted to

1
u:'\':f(l = u:'\ L= Z(“:i\t L6+2u:|\'f 1,3+u:‘\':5L,6)'

The die is fixed and the binder has only one degree of freedom, translation in the = direction.
The first step during loading is to apply a constant force on the binder while the elastic
plate is fixed in the x and y directions at x = L;2 so that the plate will not slide out of the
contact area due to the frictionless interface conditions. This dummy boundary condition
is removed in the second loading step while the binder force is kept constant and the two
edges (x = 0 and x = L) are then displaced inwards in the x direction.

Results

Results from several simulations are detailed below. The simulations consist of com-
pressing plates predisposed to modes 1, 2, 3, and 4 under various constant binder pressures.

First, plates with mode 1 pre-conditioning (wavelength 2/t = 48) were compressed
under various levels of binder pressure. For all pressures of ;.. (normalized by Young’s
modulus £) less than 2.08E — 6, mode 1 buckling was obtained (Figs 13 and 14). It is found
that the initial buckling stress levels for py,., # 0 are much higher than g, because of the
lateral constraint. Also, the post-buckling stress level is higher than g, . As shown earlier
in Fig. 7, once the normalized pressure py.../ E exceeds 2.08E —6, the elastic plate now
attempts to buckle in mode 2. However, because of the mode | pre-conditioning which
does not provide for mode 2 buckling, the numerical simulation could not capture mode 2
buckling. Instead, buckling was not predicted for p/E > 2.08E —6.

In order to capture mode 2 (wavelength 7./t = 24), the middle surface is pre-positioned
as z, = At,sin (2nx/L). Simulations show plates buckled in mode 2 when the applied
normalized pressure is less than 19.4E — 6. Similar to the mode 1/mode 2 transition, the
plate favors mode 3 when p,,../E exceeds 19.4E —6. Using mode 3 pre-dispositioning,
plates are found to buckle in a perfect mode 3 when p,,,.../E < 72.2E—6.

A summary of the above simulations can be clearly outlined by plotting the resulting
buckling stress normalized to ¢, (Fig. 13) and buckling wavelength (Fig. 14) as a function
of the applied binder pressure together with those calculated earlier in Section 2. Excellent
agreement is obtained showing the predictive abiility of the criterion given in Section 2.
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Fig. 13. Critical buckling stress and the associated buckling mode of an elastic plate with mode pre-
conditioning in FEM models subjected to lateral constraint as a function of applied binder pressure
compared to the calculated result in Section 2.
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Fig. 14. Calculated and simulated buckling wavelength using mode preconditioning in an FEM
model as a function of applied binder pressure for an elastic plate L/ = 48.

4. SIMPLIFIED IMPERFECTION FORM AND SENSITIVITY STUDY

To simulate the buckling behavior, some form of imperfection has to be implemented
into the finite element model. Above, plates under lateral constraint with pre-conditioned
modes (restricted displacement boundary conditions and mode pre-dispositioning imper-
fection) were simulated. Results were found to match the criterion extremely well. However,
in a more typical situation and for a complicated system, the buckling mode is not known
a priori and it is not guaranteed that the sinusoidal wave imperfection implemented in the
model is the correct mode. In order to simplify the incorporation of imperfections and also
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to build the basis for the next section where a robust finite element model will be proposed,
we examine imperfections in a form of thinned elements with an offset mid-surface rep-
resenting material and geometrical imperfection, respectively. The sensitivity of the solution
to the magnitude of the two parameters (i.e., thinning amount and offset amount) of this
new form of imperfection is also examined.

Finite element model

In addition to the previous method which pre-disposes the initial central line into a
specific sine wave pattern, we also propose here a new method for incorporating imper-
fections which is easier and more practical from a modeling/meshing point of view,
especially when one moves on to large forming simulations. Several columns of elements
are selected to be thinner, t = (1 —f)7, and f = 0.02, and with a mid-surface offset, =, = Az,
and 4 = 0.01, in the positive or negative z direction depending on the buckling mode to be
captured. Figure 15 shows the finite element mesh of the plate where the scales in x, y and
z directions are (1, 1, 100). The shaded areas are thinned plus offset elements. Model A is
intended to capture the first and third buckling modes. For capturing the second and fourth
modes, the locations and patterns of thinned plus offset elements are changed as shown in
Figs 15¢ and 15d, respectively. All other conditions, i.e., the amount of thinning and the
magnitude of the mid-surface offset, are the same as those of model A. In each simulation,
the loading and boundary conditions are nearly identical as those in the previous section
except that there is no restriction on u.|,_o and w.|,_,, which is close to practical cases
where the plate is constrained between a die and a binder, but is not necessarily simply
supported on its edges.

Comparison between the simplified model and the sine wave model

Results for the buckling of elastic plates under in-plane compression, relaxed boundary
conditions and two different amounts of lateral constraint are now presented. The finite
element model A described above is now subjected to a normalized binder pressure p,/E of
1.8E-6 and 72.4E-6. The model correctly predicts mode 1 buckling at p,/ £ 1.8E-6 and mode
3 bucklng at of 72.4E-6. The results of the mid-surface stress trajectory are shown in Fig.
16 together with that obtained from the models with the pre-positioned sinusoidal shapes.
Nearly identical results are obtained demonstrating that the simplified imperfection model
is feasible and effective.

Sensitivity to the magnitude of imperfection

Recall that the offset =, of the neutral axis and the thickness deduction Af of imper-
fection sites were set to 1% and 2% of the nominal plate thickness ¢z,, respectively, in the
simulations presented in the previous section. In order to examine the sensitivity of the
result to the magnitude of imperfections, the case where the plate is modeled using model
B (mode 2) in Fig. 15 and subjected to a normalized binder pressure of P/E = 5.42E—6is
studied. First, the thickness deduction factor f'is kept constant at 0.02 while the offset factor
A changes from 0.005 to 0.01, 0.02 and 0.03. The resulting normalized critical buckling
stresses are shown as the triangles in Fig. 17. As we can see, the stress level decreases as the
offset amount A4 increases. In addition, as in the case where no contact was involved (Section
2), the model with 4 = 0 cannot capture buckling under constraint even in the presence of
a thickness deduction showing the importance of offset as a critical aspect in capturing
buckling. Secondly, the offset 4 is taken to be constant at 0.01, while the thinning factor f
changes from 0 to 0.02 to 0.04. The normalized critical stresses for this variation are also
shown as the circles in Fig. 17. Again, the critical buckling stress decreases as f increases.
However, unlike the model with 4 = 0 and f # 0 which could not predict the buckling
behavior, the model with 4 # 0 and f'= 0 was found to predict buckling. Overall, the
buckling behavior of the plate under constraint is more sensitive to the geometry imper-
fection denoted by the offset amount of the neutral axis, than to the material imperfection
modeled by the thickness deduction. This can be demonstrated by one more simulation
where defects with 4 = 0.03 and /' = 0.06. The result shown as the upside-down triangle in
Fig. 17 1s extremely close to the case where 4 = 0.03 and f = 0.02.
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L_; a: model A view from (0,0,1)

b: model A view from (0,1,0) with a scale of (1.,1.,100.)

c: model B view from (0,1,0) with a scale of (1.,1.,100.)

d: model C view from (0,1,0) with a scale of (1.,1.,100.)

Fig. 15. Finite element models of a plate with thinned and offset elements.

5. ROBUST FINITE ELEMENT MODEL

As discussed earlier, the post-buckling behavior requires some form of initial imper-
fection in order to be captured. In the case of a plate under lateral constraint, modal
imperfection, where the mid-surface of the entire plate is set to a certain sinusoidal shape
(z, = A1, sin(nnx/L)), would cither provide buckling with a wavelength of A = L/n or no
buckling. In order to obtain the correct buckling behavior, several cases with various
modal imperfections must be simulated in order to obtain the lowest buckling stress which
corresponds to the correct buckling mode (Section 3). As an initial step towards constructing
a robust finite element model, modal imperfection was replaced by a simplified model of
periodically thinning elements and offsetting their neutral axes (Section 4) ; the periodicity
corresponds to modal peaks. The simplified model was found to be effective and provides
almost identical results to that obtained from the modal imperfection for the selected tests.
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Fig. 17. Sensitivity of normalized buckling stress to the magnitude of the offset 4 (dash-dotted
curve) and thickness deduction / (solid curve) at the case of normalized binder pressure at ..,/ E
of 5.42E — 6. Note that the y-axis is limited to better show sensitivity.

In this section, we propose a finite element model with randomly distributed imperfections,
where imperfections have the same form as presented in the simplified model. The predictive
nature of the random distribution model and the sensitivitics of the solutions to the
distribution of imperfections will be presented.

Finite element model
The basic problem formulation, finite element model and boundary conditions, are
identical to those in Section 3 except 96 elements are now used to model the plate and the
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a) Model D view from (0,0,1).
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b) Model D view from (0,1,0) with a scale of (1.,1.,100.).

¢) Model E view from (0,1,0) with a scale of (1.,1.,100.).
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d) Model F view from (0,1,0) with a scale of (1.,1.,100.).

Fig. 18. Finite clement models with random distributions of thinned and offset clements.

zero-clearance pressure for the contact problem is set to be 50 MPa to prevent any nodal
penetration into the rigid surfaces (binder and die).

Here, the feasibility of using a random distribution of imperfections in a finite element
model for the purposes of predicting wrinkling behavior of an elastic-plastic material will
be examined. Three random distributions denoted as models D, E and F shown in Fig. 18§,
where the scales in x, v and = directions are (1, 1. 100), will be examined. In each model,
there are 12 “weak™ eclements (the darkened elements in Fig. 18) out of a total of 96
elements, which account for approximately 12.5% of the area. These weak elements are
selected by a random generator and have a thickness deduction factor fof 0.02 and a mid-
surface offset factor 4 of 0.01 in the positive z direction.

Results
The buckling of elastic-plastic plates subjected to in-plane compression and different
levels of binder force is now simulated here as described earlier. First. model D is subjected
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Fig. 19(a). Calculated and simulated buckling wavelength as a function of applied normal pressure
for a finite elastic-plastic plate (L/r = 48).
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Fig. 19(b). Calculated and simulated buckling wavelength as a function of applied normal pressure
for a finite elastic-plastic plate (L/f = 48).

to various levels of binder pressure and then compressed in the plane. Simulations predict
the plate buckling in mode 1 and capture the post-buckling behavior when
0 < Prinder/0,, < 5.33E—4, in mode 2 when 5.33E-4 < py4/o, < 2.25E—3, in mode 3
when  2.25E—3 < ppie /0, < 5.42E—3 and in mode 4 when 542E—3 < p,u./
o,, < 1.30E —2. Results are compared to the theoretical data obtained in Section 2 and
shown in Fig. 19a. Figures 19b and 19¢ show the simulated buckling wavelength as a
function of normalized binder pressure obtained by using models E and F, respectively.
The corresponding critical buckling stress as a function of binder pressure together with
the calculated result obtained from energy conservation in Section 2 are shown in Fig. 20.
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Fig. 19¢. Calculated and simulated buckling wavelength as a function of applied normal pressure
for a finite elastic-plastic plate (L/1 = 48).
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Fig. 20. Calculated and simulated critical buckling stress as a function of applied normal pressure
for an elastic-plastic plate.

It can be clearly seen that all three models predict the buckling mode very accurately and
provide almost identical critical stress trajectories under various levels of binder pressure.
The difference between the simulated and the calculated stress level is because of the
difference on the edge boundary conditions (relaxed, with no restriction on u.|,., and
.|, vs restricted u.|,.., = u.|,_,). This will be demonstrated clearly later in Fig. 22.

The simulation results demonstrate the robustness of the finite element model with
built-in random distribution of imperfections, which can capture not only the initiation of
the buckling but also the post-buckling behavior. The success of the model for the case of
the elastic-plastic material is due to the slightly earlier plastic deformation of these offset
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elements which takes the plate through to post-buckling, showing the ability to use this
approach in a predictive manner for capturing buckling under constraint, 1.e.. the behavior
does not need to be known « priori.

6. SIMULATION OF LONGER PLATE BUCKLING UNDER CONSTRAINT

The prediction of buckling modes of plates under lateral constraints obtained by
numerical simulations in the previous section agrees with our criterion (Fig. 19) extremely
well. However, there exists a difference of initial buckling stress between the calculated and
simulated results (Fig. 20). This is due to a combination of relaxed edge boundary conditions
and a limited length of the plate. The dependence of critical buckling stress on the length
of plates and boundary conditions was also reported by Shahwan and Wass (1994) for the
case of buckling of unilaterally constrained elastic rectangular plates. In order to reduce
the effect of boundary conditions and further examine the predictive nature of our proposed
numerical model, longer plates having a total length three times that of the previous plates
(L't = 144 vs L/t = 48) are now considered in this section.

Finite element mode!

Four various finite element models are used to numerically simulate the buckling of
longer plates under lateral constraint. The first two models (Models G and H) have 144
shell elements to model the plate. The third (Model 1) and fourth model (Model J) have
192 and 216 elements, respectively. The imperfection is in a form of randomly distributed
thinned (/= 0.02) elements with an offset (4 = 0.01) mid-surface. The ratio of number of
weak elements to the total number of the shell elements is kept the same as before, that 1s,
12.5%. Figure 21 shows the side view of the original meshes of these models with a scaling
of (1,1,100). The models are then subjected to edge compression and a range of binder
pressures to study the buckling behavior of longer plates.

Results

The results of numerical simulations will be compared with the calculated wavelengths
and buckling stresses of an infinite plate obtained in Section 2. As observed in the previous
section, all of the models are capable of capturing various post-buckling behavior. The
deformed meshes under several binder pressures using Model G are shown in Fig. 22 as a
demonstration. As shown. despite the relaxed edges, the central part of the longer plate is
undergoing an almost perfect modal buckling. Therefore, the wavelength of the central
plate is taken to be the resulting buckling wavelength under the given binder pressure. For
the case of puyu. /o, = 4.34E—3. the buckling wavelength 4/r is 14.14. Meanwhile, the
relaxed boundary conditions results in an 8% lower buckling stress in the 20 edge elements
than the other elements. The average buckling stress of the center part of the plate is
reported as the buckling stress under that binder pressure. Figures 23 and 24 show the
predicted normalized buckling wavelength and initial buckling stress as a function of
applied binder pressure using Models G to J. The calculated results obtained in Section 2
are also shown as the solid line in the figures.

All the simulation results have excellent correlation with the calculated results from
energy conservation. The wavelength is predicted. Also, the predictions of initial buckling
stress are closer to the calculated result than those of short plates (Fig. 20), indicating that
the difference of initial buckling stress observed in the previous section is indeed due to the
edge effect on the limited length configuration. Similar results are obtained by using finite
element Models G to | where the mesh densities are 1.0/mm, 1.0/mm and 1.33/mm,
respectively. A better result is obtained when the mesh density is increased to 1.5/mm
(Model ). The consistent results obtained from the four various models demonstrate the
robustness and predictive nature of our proposed method of modeling imperfections in a
practical and easy way.
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a) Model G view from (0,-1,0) with a scale of (1.,1.,100.).
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b) Model H view from (0,-1,0) with a scale of (1.,1.,100.).

b

c) Model I view from (0,-1,0) with a scale of (1.,1.,100.).

[.

d) Model J view from (0,-1,0) with a scale of (1.,1.,100.).

L

Fig. 21. Finite element models of a longer plate.

7. CONCLUSION

A buckling criterion was developed for a rectangular plate subjected to edge com-
pression and lateral constraint imposed by rigid binders using a combination of finite
element analysis and energy conservation law. A perfect plate is initially loaded with edge
compression u, only and its total strain energy & () is recorded. Plates buckling to various
modes are achieved by initial dis-positioning of the middle surface into proper mode shapes.
Their associated total strain energy &,(u,) is also recorded. Then the lateral constraint
force/pressure needed to suppress wrinkling is calculated based on the energy difference
and buckling amplitude 6. The wrinkling criterion then defines the buckling mode/
wavelength and the buckling stress as a function of applied lateral constraint for the cases
of both elastic and elastic-plastic plates. In order to initiate wrinkling in the numerical
simulation, some form of imperfection must be implemented into the finite element model.
Finite element models with specified modal imperfection and boundary conditions were
subjected to edge compression and lateral constraint to verify our criterion to be accurate.
However, as discussed in the text, modal imperfection is not predictive. A simpler, more
practical and predictive way of providing this, imperfections in a form of randomly distrib-
uted, thinned and offset elements, was developed and used to simulate plate buckling under
lateral constraint. The simulations were found to be able to predict the correct buckling
mode/stress and to capture the post-buckling behavior and, therefore, demonstrated the
robustness and predictive manner of our proposed finite element model. Simulation of plate
buckling is found to be somewhat imperfection sensitive, more sensitive to the geometric
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Fig. 24. Calculated and simulated critical buckling stress as a function of applied binder pressure
for an elastic-plastic plate.

imperfection than to the material imperfection. For the elastic-plastic plate, the solution is
insensitive to the distribution of the imperfections.

In the case where wrinkling under the binder is absolutely intolerable, that is, wrinkling
must always be suppressed, one can eliminate the necessity of highly refined meshes in
three-dimensional simulation by calculating the critical buckling stress as a function of
applied normal pressure in advance and simply maintaining the required binder pressure
depending on the compressive stress state. On the other hand, in the case where post-
buckling behavior is tolerable but must be monitored, especially with respect to its influences
on part shape, one can hold confidence in predicting the behavior by using a random
distribution of thinned plus offset elements and/or adapting the mesh density by calculating
the wavelength as a function of applied lateral pressure for that particular material. The
proposed technique eliminates the need for an eigenvalue analysis to determine buckling
initiation and also the need to adjust the mesh for post-buckling behavior. The method of
building a robust numerical model for predicting the wrinkling behavior (onset and post-
buckling) has been used in simulations of a cup drawing process where wrinkling is
considered as one of the two major in-process failure modes (wrinkling and tearing). The
model has been further utilized to optimize and control the forming process to enhance the
performance. Preliminary results of that study were reported in Cao and Boyce (1994).
More details of these applications will be demonstrated in an upcoming paper (Cao and
Boyce, 1993).
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